Near-side $\Delta \eta$ correlations of high- p_t hadrons from STAR

Jörn Putschke (for the STAR Collaboration¹)

Lawrence Berkeley National Laboratory, Berkeley, California 94720

Abstract. Systematic measurements of pseudorapidity $(\Delta \eta)$ and azimuthal $(\Delta \phi)$ correlations between high- p_t charged hadrons and associated particles from the high statistics 200 GeV Au+Au and Cu+Cu datasets will be presented. In previous measurements differences in the near-side $\Delta\eta$ correlation between central Au+Au and the lighter systems d+Au and p+p were observed, including an additional long-range near-side correlation in Au+Au collisions. Studies to characterize the properties of the additional correlation will be presented.

Keywords: jet-quenching, longitudinal flow, near-side dihadron correlations, Au+Au, Cu+Cu PACS: 25.75.Dw, 25.75.Gz

The observation of additional near-side long-range $\Delta \eta$ correlations for soft hadrons $(p_t < 2 \text{ GeV})$ in Au+Au collisions was first noted in [1]. Similar effects were observed in [2, 3] but in a kinematic regime where parton fragmentation may play a significant role. In these proceedings the increased statistics in Au+Au and Cu+Cu will be used to show systematic studies of the correlated yield dependence on centrality and transverse momentum of the trigger $(p_{t,trigger})$ to characterize the properties of the long-range $\Delta \eta$ correlation.

To extract the correlated yield of the near-side long-range $\Delta \eta$ correlation (ridge yield) from dihadron correlation measurements, we take advantage of the η and ϕ acceptance of the STAR-TPC, by projecting the two dimensional $(\Delta \eta \times \Delta \phi)$ correlation function onto $\Delta \phi$ and $\Delta \eta$ in different $\Delta \eta \times \Delta \phi$ regions after correcting for the finite $\Delta \eta$ pair acceptance. Three methods were used to characterize the short-range jet-like (J) and ridge-like (R) contributions to the near-side jet yield² in $\Delta \eta$ and $\Delta \phi$:

- $\Delta \phi(J+R)$ method: Projecting onto $\Delta \phi$ with the full experimental $\Delta \eta$ acceptance and subtracting the elliptic flow (v_2) modulated background.
- $\Delta \phi(J)$ method: Subtracting the $\Delta \phi$ projection for $|\Delta \eta| > 0.7$ from the $\Delta \phi$ projection around the near-side jet-like correlation ($|\Delta \eta| \le 0.7$). The flow modulated background and the ridge-like correlations are thereby removed (under the assumption that the ridge-like correlation is uniform in the STAR $\Delta \eta$ acceptance).
- $\Delta \eta(J)$ method: Projecting onto $\Delta \eta$ in a $\Delta \phi$ window around the near-side jetlike correlation. Under the assumption that the ridge-like correlation is uniform

¹ For the full list of authors see [1].

² The near-side yield is defined as the integral of a gaussian fit to the $\Delta \phi$, $\Delta \eta$ correlation functions.

FIGURE 1. a) Near-side yield as a function of N_{part} in Au+Au. b) Relative ridge yield for different centralities as a function of $p_{t,trigger}$ for $p_{t,assoc.} > 2$ GeV in Au+Au. The lines represent the systematic error due to uncertainties in the elliptic flow measurements.

in the STAR-TPC $\Delta\eta$ acceptance subtracting the measured constant background will remove the ridge-like contributions.

In Fig. 1 a) the near-side yield is shown as a function of N_{part} for all three methods. The agreement of the yields in the $\Delta \eta(J)$ and $\Delta \phi(J)$ methods and their independence of centrality for fixed $p_{t,trigger}$ and $p_{t,assoc}$ supports the assumption of a jet-like origin. In contrast the $\Delta \phi(J+R)$ method shows a significant increase of the near-side yield with centrality due to the inclusion of the ridge-like correlations and one can define the (absolute) ridge yield = yield $(\Delta \phi(J+R))$ - yield $(\Delta \eta(J))$. By normalizing to the jet-like yield $\Delta \eta(J)$ the relative ridge yield contribution is obtained. By varying the $\Delta \eta$ projection window in the $\Delta \phi(J+R)$ method it was found that within the STAR $\Delta \eta$ acceptance the ridge is independent of $\Delta \eta$ (not shown). This supports the assumptions made in the $\Delta \phi(J)$ and $\Delta \eta(J)$ method to subtract the ridge yield contributions. The main systematic error is due to the uncertainty in the elliptic flow measurement for the $\Delta \phi(J+R)$ method. The v_2 values used in this analysis are: the mean of the reaction plane $(v_2\{RP\})$ and four-particle cumulant method $(v_2\{4\})[4]$ in Au+Au and the scalar product method $v_2\{CuCu-pp\}$ in Cu+Cu [5]. The systematic uncertainties were estimated using $v_2\{RP\}$ as maximum and $v_2\{4\}$ for Au+Au (v_2 =0 for Cu+Cu) as minimum v_2 values (represented as lines in all figures).

The relative ridge yield for $p_{t,assoc.} > 2$ GeV decreases strongly with increasing $p_{t,trigger}$ (Fig. 1 b)). A strong centrality dependence is also visible: the relative ridge yield decreases from a large contribution in central Au+Au to a negligible contribution in peripheral Au+Au collisions for the lowest $p_{t,trigger}$ bin. The most striking feature however is the observation that the (absolute) ridge yield is independent of $p_{t,trigger}$ for each centrality class, but increases with centrality as shown in Fig. 2 a). For higher $p_{t,assoc.} > 3$ GeV (not shown) the (absolute) ridge yield is smaller but also independent of $p_{t,trigger}$ and still showing a similar centrality dependence.

FIGURE 2. a) (Absolute) Ridge yield for different centralities as a function of $p_{t,trigger}$ for $p_{t,assoc.} > 2$ GeV in Au+Au. b) Centrality dependence of the relative ridge yield for Au+Au and Cu+Cu. The lines represent the systematic error due to uncertainties in the elliptic flow measurements.

In Fig. 2 b) the centrality dependence of the relative ridge yield in Au+Au compared with Cu+Cu collisions is shown. In the overlapping N_{part} region the relative ridge yield in Cu+Cu is consistent with Au+Au. This result is in agreement with the observed N_{part} scaling of the nuclear modification factor in Au+Au and Cu+Cu collisions [6] indicating that these effects could have the same origin.

The underlying physics of these effects are not quite clear yet, but the independence of the (absolute) ridge yield on $p_{t,trigger}$ is consistent with the picture where the ridge is caused by the coupling of induced radiation to longitudinal flow [7] with a radiation spectrum that is independent of the jet energy. Alternative approaches to describe these phenomena are based on a combination of jet-quenching and strong radial flow [8] or on recombination of thermal partons in the recombination framework [9]. To distinguish between these models measurements with an increased $p_{t,assoc.}$ threshold as well as with identified associated particle will be persuaded. The influence of the different geometries in Au+Au and Cu+Cu could be tested by a reaction plane dependent analysis. Quantitative theoretical calculations are needed to understand the origin of the ridge yield.

REFERENCES

- 1. J. Adams, et al. (2004), nucl-ex/0411003.
- 2. P. Jacobs, Eur. Phys. J. C43, 467-473 (2005), nucl-ex/0503022.
- 3. D. Magestro (2004), talk given at Hard Probes 2004.
- 4. J. Adams, et al. (2004), nucl-ex/0409033.
- 5. G. Wang (2005), nucl-ex/0510034.
- 6. J. C. Dunlop (2005), nucl-ex/0510073.
- 7. N. Armesto, et al., *Phys. Rev. Lett.* **93**, 242301 (2004), hep-ph/0405301.
- 8. S. A. Voloshin, *Nucl. Phys.* **A749**, 287–290 (2005), nucl-th/0410024.
- 9. C. B. Chiu, and R. C. Hwa, *Phys. Rev.* C72, 034903 (2005), nucl-th/0505014.